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missing top partner?

fine-tuned

part 1:  closing the 
light stop window

part 1I:  the weak 
scale from BBN

this talk:

(stealth stop)

mh ⇡ 125 GeV

+ no obvious BSM below ~1 TeV

multiverse?
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1.  killing the stealth stop
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Figure 1: 6E
T

distribution in top and stop events, where we have considered stop decays to massless
neutralinos. The rate is normalized to the number of events with two isolated leptons.

di�cult to separate from top pair production [39]. Furthermore, unlike compressed

supersymmetry scenarios, the events do not become more distinctive when recoiling

against an additional hard jet [40].

The stealth stop regime is the most challenging and can involve a large new physics cross

section at the LHC. This regime is the focus of our current study.

We illustrate the stealth regime in Fig. 1, which shows the missing transverse energy

distribution for dileptonic events from top pairs and 200 GeV stop pairs (decaying as

t̃ ! t�0). This is based on a simulation with cuts that we will describe in Sec. 4.3. The

distributions for tops and stops are very similar, because in the rest frame of the stop, in

the limit of small mass di↵erence and massless �0, the momentum of the decay products

is ⇡ �m = m
˜t � mt. In the lab frame, the �0 carries away invisible momentum of order

� �m, and for production of typical stop pairs the boost is not large.

If a stop decays to a massless neutralino, the transition from the three-body regime

to the stealth regime is not smooth. The three-body decay ends abruptly at m
˜t = mt,

at which point two-body stealth decays dominate until the mass splitting becomes large

enough that the decays are no longer stealthy. The case of a stop decay to a gravitino is

slightly more subtle; the gravitino couples to SUSY breaking, leading to two extra powers

of m
˜t � mt phase-space suppression in the two-body decay rate. This allows the three-

body regime to extend to somewhat higher masses, as illustrated in Fig. 2. (This plot

and others throughout the paper rely on simulations performed with MadGraph 5 [41],

as well as goldstino vertices we have implemented [42] using the UFO format [43]). The

estimates in [8] show that current analyses have weakened sensitivity in the range mt .
m

˜t . 250 GeV, which we will take as our characterization of the stealth stop window.

We review the current searches relevant for stops in Sec. 2, characterizing the extent to

which they are simple top rate measurements in this window. Although more data will

reduce the statistical errors on measurements of the top, both experimental systematics
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Figure 6: ��(`+, `�) for tt̄ production, t̃t̃⇤ production, and tt̄ production with spin correlation
turned o↵ (i.e., the di↵erential rates for production and decay are factorized and we randomize the
top helicities in between). Notice that, from the point of view of this variable, stops are essentially
the same as spin-uncorrelated tops. Also, polarization e↵ects are small, as left- and right-handed
stops have the same distribution.

hypothesis that a spin-correlated tt̄ sample has O(10%) contamination from scalar events,

which approximately look like spin-uncorrelated tops.3

When the LSPs are soft, stop events are similar to top pair events without correlation.

This is illustrated in Figure 6, which shows one distribution, ��(`+, `�), which is sensitive

to spin correlations, and for which stops look like tops with spin correlation turned o↵. We

have calculated the observable for tops with MC@NLO [75, 76] at parton level, and checked

that corrections from varying the top mass and the renormalization and factorization scales

are small relative to the shift that would arise from adding a sample of stops to the tops.

This observable has been studied by ATLAS to probe the existence of spin correlations in

tt̄ production [77], with the most recent update achieving 5� significance for the existence

of nonzero correlation e↵ects [78].

In order to confirm the SM top pair spin correlation Ref. [48] proposed a method using

full matrix elements with and without spin correlation. This method has been implemented

experimentally in Tevatron searches [79, 80], which observed evidence for spin correlation

in both the dileptonic and semileptonic channels. Since many more top events are produced

at the LHC than at the Tevatron, we are expecting a more precise measurement at the

LHC of the tt̄ spin correlation. Any deviation from the SM prediction will be a sign of

new physics. In the presence of light stops, we will observe a mixture of correlated and

uncorrelated top pairs. In the following, we discuss the use of the matrix element method

in stop searches. We concentrate on the dileptonic channel in the following discussion.

3One other e↵ect that could play a role in angular distributions turns out to be unimportant for us: the

stop can be mostly right-handed or mostly left-handed (as some theoretical models predict; see e.g. [24]),

and so the tops coming from the stop decays can be polarized. While it can be an appreciable e↵ect if the

mass splitting between top and stop is large [73, 74], it is a small e↵ect in the stealthy regime, as we have

checked explicitly. Hence, we will not discuss it further.

– 10 –



where is SUSY?

•we usually look for SUSY by separating signal from 
background (MET/HT tails, ...)

• instead, what about using precision SM 
measurements?
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CERN-PH-TH/2013-056, TTK-13-08

The total top quark pair production cross-section at hadron colliders through O(α4
S)

Micha!l Czakon and Paul Fiedler
Institut für Theoretische Teilchenphysik und Kosmologie,
RWTH Aachen University, D-52056 Aachen, Germany

Alexander Mitov
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

(Dated: March 26, 2013)

We compute the next-to-next-to-leading order (NNLO) QCD correction to the total cross-section
for the reaction gg → tt̄+X. Together with the partonic channels we computed previously, the result
derived in this letter completes the set of NNLO QCD corrections to the total top pair production
cross-section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation
with next-to-next-to-leading logarithmic accuracy we estimate that the theoretical uncertainty of
this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the
Tevatron. We observe a good agreement between the Standard Model predictions and the available
experimental measurements. The very high theoretical precision of this observable allows a new
level of scrutiny in parton distribution functions and new physics searches.

INTRODUCTION

Production of top quark pairs at hadron colliders is
among the processes that are most challenging to the-
ory. Bringing this process under good theoretical control
therefore represents a significant step in our broader un-
derstanding of perturbative Quantum Chromodynamics
(QCD) and its applications at hadron colliders.

The first step in this direction was made some 25 years
ago, when the next-to-leading order (NLO) QCD correc-
tions to tt̄ production were computed in the groundbreak-
ing works [1, 2]. The complexity of the NLO calculations
required the application of purely numerical methods,
and it took almost twenty years before the exact analytic
result appeared [3] revealing the full complexity of the
cross-section for massive fermion hadroproduction.

In the last few years we are witnessing a signifi-
cant interest in computing next-to-next-to leading order
(NNLO) corrections to hadron collider processes. Such a
demand is dictated in part by the high-precision mea-
surements available from the LHC and the Tevatron.
The first hadron collider processes that were computed at
NNLO, namely, Drell-Yan and vector boson [4–6], Higgs
[7–9] and diphoton [10] production, all share the proper-
ties of (a) having massless QCD partons and (b) involv-
ing at leading order (LO) two partons meeting in a color
singlet vertex. Tackling processes with higher complex-
ity, among which tt̄ production is a prominent example,
proved to require new computational approaches.

About one year ago, the first step in this direction was
made precisely in the context of tt̄ production. Based on
a new view [11] about how to treat double-real radiation
corrections, the first genuinely NNLO corrections to the
total inclusive cross-section in qq̄ → tt̄ + X were com-
puted [12]. Later on, the partonic reactions involving
at least one fermion in the initial state were also com-
pleted [13, 14]. In this work we report the calculation

of the last missing NNLO correction to tt̄ production, in
the partonic reaction gg → tt̄ + X . With this calcula-
tion, the complete set of NNLO corrections to the total
inclusive cross-section for top pair production at hadron
colliders is now known. In this letter, for the first time,
we quantify their phenomenological implications.
Before closing this section we would like to point out

the very recent NNLO calculation of the process pp →
H + j [15] which was performed with methods similar to
ours and, in particular, the subtraction scheme proposed
by one of us [11]. Moreover, a first partial result for dijet
production pp → jj at NNLO has just appeared [16]. We
believe that this burst of precision applications at hadron
colliders marks the outset of a new and lasting stage in
precision physics at hadron colliders.

THE tt̄ PRODUCTION CROSS-SECTION

In this letter we consider the total inclusive tt̄ produc-
tion cross-section

σtot =
∑

i,j

∫ βmax

0
dβ Φij(β, µ

2
F ) σ̂ij(β,m

2, µ2
F , µ

2
R) . (1)

The indices i, j run over all possible initial state par-
tons; βmax ≡

√

1− 4m2/S;
√
S is the c.m. energy of the

hadron collider and β =
√
1− ρ, with ρ ≡ 4m2/s, is the

relative velocity of the final state top quarks with pole
mass m and partonic c.m. energy

√
s.

The function Φ in Eq. (1) is the partonic flux

Φij(β, µ
2
F ) =

2β

1− β2
Lij

(

1− β2
max

1− β2
, µ2

F

)

, (2)

expressed through the usual partonic luminosity

Lij(x, µ
2
F ) = x (fi ⊗ fj) (x, µ

2
F ) . (3)

NNLO+NNLL

�tt̄ = 172+4.4
�5.8(scale)

+4.7
�4.8(pdf) pb
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stop + top
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stop + top
CMS dilepton @7TeV:
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LHC top mass
(5/fb)

173.3± 0.5± 1.3 GeV

what is mt in the 
presence of stop 
contamination?

varying the top mass:

stop + top

50 100 150 200 250 300

165

170

175

180

185

190

195

mté @GeVD

m
t
@Ge

V
D

mté = mt

CMS st



and now for something completely different...



2.  the weak scale from BBN
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dangers of a variable weak scale 

• Agrawal, Barr, Donoghue, Seckel 9707380 
• Damour, Donoghue 0712.2968 
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minimal landscape

Arkani-Hamed, Dimopoulos, Kachru 0501082 

assume only dimensionful parameters scan:
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runaway to large v?

• nuclear physics depends on the quark masses
 

• runaway: increase v, fixing quark masses,

(yu, yd, v)
scan:

yu,d ! mu,d

v

“Weakless Universe,” Harnik, Kribs, Perez 0604027 



weak-scale physics 
in our Universe

1. BBN

2.  pp chain in stars 

3. supernovae

p+ ⌫̄e ! n+ e+

p+ p ! d+ e+ + ⌫e

e� + e+ ! ⌫ + ⌫̄
⌫̄ + p ! n+ e+
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dangers of a helium universe

primordial hydrogen is important for:

• galactic halo cooling

• stars powered by pp chain

• water

quantifying how much hydrogen is needed for 
observers we leave for future work...



BBN and the weak scale
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(technical aside)
Isospin Breaking: Mn - Mp

1.5 2.0 2.5 3.0 3.5

�Mmd�mu
n�p [MeV]

2.26(71) NPLQCD [hep-lat/0605014]

2.51(52) Blum et. al. [1006.1311]

3.13(57) QCDSF-UKQCD [1206.3156]

2.90(63) RM123 [1303.4896]

2.28(26) BMWc [1306.2287]

2.49(12) weighted average

What do we know?

�Mmd�mu
n�p = 2.49(12) MeV

1.40(03)(47) MeV
�M�

p�n = Mp �Mn � �Mmd�mu
p�n = 1.20(12) MeV

[AWL, C.Carlson, G.Miller PRL 108 (2012)                                               ]   

from Andre Walker-Loud, Lattice 2013



• in a multiverse where                   scan, all three 
parameters are bounded by requiring stable 
Hydrogen, complex nuclei, and not too much 

Helium from BBN 

(yu, yd, v)

• but what if other parameters scan too?
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varying the baryon density

if DM is a WIMP,

� / 1
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Tegmark,  Aguirre,  Rees,  Wilczek 0511774
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take away

1.  the stealth stop 
window can be probed 

using the top σ and mass
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2.  BBN may determine the 
weak-scale in the multiverse ÊÊ
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natural or tuned? 13 TeV awaits!
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